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Transfer and weighting functions of a sewage treatment plant based
on random input and output signal characteristics
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Abstract

The paper is an attempt to describe application of the statistical identification technique for practical problems of the dynamic response of
a typical functioning sewage treatment plant. Mathematical model of the plant is based on characteristics of random input and output signals
obtained simultaneously. This idea has been applied to the stationary linear dynamic sewage treatment plant whose model is described by
the weighting function and the transfer function. The plant weighting function was determined from the autocorrelation function of the
input and the cross-correlation function of input and output using integral Wiener-Hopf equation. The transfer function was related with
the weighting function of Laplace transformation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Application of statistical methods to experimental data
employs the dynamical description of a system by applying
statistical methods to experimental data in case of incom-
plete information about the processes involved or when the
processes are to complicated to be described by a determin-
istic model. The sets of data taken during normal exploita-
tion of a system are used. The problem of identification
and process-parameter estimation from statistical measure-
ments is encountered in industrial, biological, agricultural
and other processes. Random variations in the input forcing
signal along with the sewage treatment plant response form
the base for developing a mathematical model by the statis-
tical correlation techniques[1–3,9]. If dynamical movement
of a system is limited to a narrow area of normal operation
than the construction of a statistic model of a plant is of-
ten based on the stationary linear lumped parameters model.
This model is unduly crude but simple and easy in practi-
cal application. A complex system might be so complicated
that even full available statistical information about the state
of its elements doesn’t make it possible to establish func-
tionality of the system in general. In that case the idea of
a black box is introduced, having multiple random inputs
and multiple random outputs and the reactions on any ex-
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ternal interaction, with unknown internal bonds. There are
processes in systems for which the state of the object could
not be changed at will (astronomical objects, medical di-
agnostic, economical analysis) and in that case to analyse
these objects the idea of a black box is used. To establish
relations between information sets the methods of nonlinear
many-dimensional sequential regression is applied by form-
ing a hypersurface of the system reaction on the external
interactions. An increase of the dynamical description pre-
cision leads to an increase on information use and for a spe-
cific closed set of experimental data this type of analysis is
too labour-consuming and gives poor practical results. More
reasonable seems to apply the statistical averaging estima-
tors for the mathematical description of stochastic signals
in effects leading to graphical images of the input autocor-
relation function and the output cross-correlation function.
For the description of these functions one needs to apply the
transformed analytical functions. If the knowledge about the
interaction between various system signals is lacking then in
a simplified model the matrixes of the correlation functions
and dynamical characteristics are reduced to the diagonal
matrices. From the solution of a system of the vector-matrix
stochastic integral equations including state parameters, ran-
dom vector input and output, and random vector initial con-
dition, unknown matrices of parameter constants describing
mathematical model of a black box could be obtained. The
system analysed in this paper may be treated as a black box in
case if only the estimation of the municipal sewage treatment
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plant efficiency is needed in regard to environmental pro-
tection regulations. However, the knowledge of the system
structure and functioning of its elements enables to establish
the block structure of the system of control interactions for
a real and functioning municipal sewage treatment plant.

2. Description of the sewage treatment plant

The experimental data of indices specifying concentra-
tion of five main components in raw and treated sewage
were obtained from a typical mechanical–biological
sewage treatment plant using municipal sewage from the
West-Pomeranian region in the north-west of Poland. A
simplified operational schematic diagram of this plant is
presented inFig. 1. The technology of sewage treatment
is based on an activated sludge process. Plant installation
consists of intermediary and secondary settlement tanks
connected with two aeration activated sludge chambers hav-
ing two separate recirculation systems of activated sludge.
The main plant structures are localised in an embankment
what causes the gravitational flow of sewage through the
plant to the river. Raw sewage flows through the grating in
the building and large litter is stopped, removed and trans-
ported by conveyour-belt system to the container placed at
the base of embankment were it is treated with chlorinated
lime and finally transported outside the plant to the commu-
nal dumping ground. Near raw sewage collection points of
raw sewage the water hydrants are placed for maintaining
cleanness in an area of sewage release with street inlets
to the local drainage system. After flowing through the
grating, sewage is directed to the two-chamber horizontal
sand tank. Mineral suspension is removed periodically by
a mammoth pump and transported to the plot of ground
at the base of sand tank. Mechanically cleaned sewage is
directed to the distribution well and further to the activated
sludge aeration chambers. To assure the closest contact of
sewage with activated sludge, the contents of the chambers

   8 
7 

9      9 

11   10

5

6

44

7

3 2 1 
raw 
sewage 

7

treated 
sewage 

Fig. 1. Block diagram of a functioning municipal sewage treatment plant
in West Pomeranian region in Poland. 1: raw sewage tank; 2: grate;
3: two-chamber horizontal sand tank; 4: biological treatment tank; 5:
intermediary settlement tank; 6: secondary settlement tank; 7: recirculation
of activated sludge; 8: sedimentation lagoon; 9: sludge consolidation tank;
10: tank for cleaned water taken from over the sludge; 11: pumping
station.

with activated sludge is mixed mechanically. Due to the
action of aerobic micro-organisms the organic component
of sewage as well as biogenic substances are mineralised.
The most obvious harmful effect of biodegradable organic
matter in sewage is BOD, consisting of a biochemical
oxygen demand for dissolved oxygen by microorganism
living in an activated sludge. The result of contamination
removal of by an activated sludge of biogenic substances
is described by the so-called removal effect parameters
(Ntot and Ptot) expressed as the ratio of concentration in
comparison to the respective concentrations in untreated
sewage. Another method of organic substances removal is
the process of their chemical oxidation. This process is
described by the COD (chemical oxygen demand) index.
For our mechanical–biological sewage treatment plant this
index may be used alternatively. The excess of sediments
containing non-decomposed input sediments together with
biological secondary sediments is removed to the excess
sediment concentrators and next to separate fermentation
chambers where fermentation process takes place. Water
from the excess sediment chambers, fermentation chambers
and sedimentation lagoon is collected in a special chamber
and directed to the raw sewage collection points. The raw
and treated sewage is evaluated on the sediment contents
and directed to a natural collector. Concentration measure-
ments for suspension (Polish Standard-72/C-04559), bio-
genic compounds of nitrogen (Polish Standard-73/C-04576)
and phosphorus (Polish Standard-C-04537-14) and organic
compounds (BOD, Polish Standard-84/C-04578.05, COD,
Polish Standard-74/C-04578/03) were performed according
to a common procedure in order to determine the amount
of each component. The results of measurements were pre-
sented in form of the discrete values of random function
input signals as well as output signals obtained simultane-
ously. The number of measurements for each component
was 120.

3. Theoretical description

Statistical methods are often used by many researchers to
obtain quickly a rough estimate of the structure and param-
eters of a mathematical model for a functioning industrial
plant. The results should be quite satisfactory and highly ef-
fective in plants of varied and complicated physical nature
whereas other methods yield no practical results. Very of-
ten the dynamic characteristics of an industrial plant are ob-
tained using the correlation analysis[4,5]. When the random
vector functionsm̄(t), ū(t) ∈ {v̄(t)} are stationary then the
correlation matrix of the input random vectorsm̄(t) as well
as the cross-correlation matrix of input and output random
vectorsū(t) depend only on the intervalt2 − t1 = τ and are
independent of the position of these intervals in the range
of argumentt andτ. Consequently, these matrixes may be
found by solving the following integral equation[1,6]:
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Rvv(τ) = limit
T→∞

1

T − τ

∫ T−τ

0
[v̄(t + τ) − µ̄v][ v̄(t) − µ̄v]T dt

(1)

whereµ̄v(i = 1, n) is the expectation constant vector of a
random vector̄v(t). When the random functionsvi(t) and
vj(t) are ergodic, stationary, and statistically independent,
then for a limited time of random vector existence the corre-
lation matrixes are diagonal matrixes and each matrix com-
ponent is defined by the equation

R∗
vv(τ, T) = 1

T

∫ T

0
[v̄(t + τ) − µ̄v][ v̄(t) − µ̄v]T dt (2)

As follows fromEq. (2)the accuracy of the correlation func-
tion determination depends on the length of integration in-
tervalT and by selecting the value ofT the random function
v(t) should be related to a certain class of random functions
having a known structure of the correlation function, i.e. to
built a mathematical model. If this model describes the ran-
dom function sufficiently well than the correlation function
will be optimised in the sense of mean square deviation

σ2
R(τ, T)= 2

T 2

∫ T

0
(T − δ)[R2

v(δ) + Rv(τ + δ)(Rv(δ − τ)] dδ

(3)

In practice only discrete random functions within a lim-
ited time intervalT are available and in that case instead of
(3) yet another criterion limiting calculations of correlation
functions to the values of time shift defined by the relation

τ = τmax if |R(τ)| ≤ 0.05|R(0)| (4)

is used.
Eq. (2)to calculate the correlation function by truncating

the sum to a finite number of terms has the following form

R∗
vivi

(k) ≈ 1

N − k

N−k∑
j=1

0
vjj

0
vj+k (5)

whereT/�t = N andτ → k.
Normally the plant-weighting matrix is determined

through the convolution integral[3]

R̄m̄ū(τ) =
∫ t

0
W(τ)Rm̄m̄(t − τ) dτ (6)

In determination of the weighting matrixW(τ) by solving
the convolution integral (6), the auto-correlation and the
cross-correlation matrices should be used as, respectively

Rm̄m̄(τ) =
{

R+
m̄m̄(τ) at τ ≥ 0

R−
m̄m̄(τ) at τ ≤ 0

(7)

Rm̄ū(τ) =
{

R+
m̄ū(τ) at τ ≥ 0

R−
ūm̄(τ) at τ ≤ 0

(8)

Thus, the convolution integral can be represented by the
following form at t ≥ 0:

diag{R+
m̄ū(τ) − R−

ūm̄(τ)} =
∫ t

0
diag{W(τ)}

× diag{R+
m̄m̄(t − τ) − R−

m̄m̄(t − τ)} dτ (9)

where m̄(t) andū(t) are{csus(t); BOD(t); COD(t); cN(t);
cP(t)} as inlet and outlet stochastic signals.

Describing each element of these correlation matrices in
time domain by analytical functions and if for these func-
tions Laplace transforms[7] exist, than. the solution of
Eq. (9)gives the transfer functions matrix[8]

W(s) = S+
ūm̄ − S−

m̄ū(s)

S+
m̄m̄(s) − S−

m̄m̄(s)
(10)

Taking the inverse Laplace transform of the transfer function
(10) we obtain the plant weighting function matrix

W(t) = 1

2�j

∫ α+j∞

α−j∞

[
S+

ūm̄(s) − S−
m̄ū(s)

S+
m̄m̄(s) − S−

m̄m̄(s)

]
est ds (11)

In order to find the solution ofEq. (10) it is necessary to
describe each component of the transfer functions matrix as
a composition of both a numerator and a denominator. Then
the time response for each measured component of sewage
can be obtained by use of the residuum methods.

4. Results of calculation

In this paper a set of 120 data points for five main com-
ponents of a raw sewage and of treated sewage which were
measured synchronously for a specific time interval in a nor-
mally functioning treatment sewage plant are used. Static
characteristics and the variation range and allowed values
of analysed indicators for untreated and treated sewage are
presented inTable 1. The results of measurements are pre-
sented in form of discrete stochastic functions. The charac-
ter of these functions for analysed indicators is similar and
as an example we present inFigs. 2 and 3the time variation
of BOD indicator for raw and treated sewage. Analytical
description has been based on estimators defined inEq. (5)
which was applied to calculate the values of the autocorre-
lation functions and the cross-correlation functions. As an
example, the results of these calculations for phosphorus are
presented inFigs. 4 and 5. They show the variation of the
correlation functions with time for the raw and the treated
sewage. The points in these figures represent the values of the
correlation function estimators. Similar figures were made
for other used indicators but they are not published here.

It is assumed that generally the structures of the correla-
tion functions of random input and output signals are repre-
sented by an analytical expression having Laplace transform.
This transform gives well defined relationships between the
time domain and the frequency domain description. Analy-
sis of the correlation functions presented inFigs. 4 and 5for
phosphorus and other measured indicators lead us to propose
the same analytical form of the auto-correlation (12) and
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Table 1
Statistical characteristics, limiting values and admissible values for five main indicators for raw and cleaned sewage

V̄ Raw sewage Treated sewage Admissible valuesa

E(v) �(v) σ(v) vmin − vmax E(v) �(v) σ(v) vmin − vmax

BOD 251.70 34.76 46.93 160–360 10.23 1.78 2.06 6–15 30.0 mgO2/l
COD 488.56 50.57 65.78 458–693 49.72 5.92 7.09 34–65 150.0 mgO2/l
Suspension 123.75 14.26 17.00 88–163 11.21 2.81 3.4 4-22 50.0 mg/l
Ntot 121.42 17.37 20.33 76–163 8.35 1.79 2.11 4.3-13.2 30.0 mgN/l
Ptot 11.29 0.93 1.15 9–14.5 1.24 0.16 0.20 0.91–2.1 5.0 mgP/l

a RP Parlament Law Register (Poland ) No. 79, 503, 5 November 1991.

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100 110 120

Time (twenty-four hours)

B
io

ch
em

ic
al

 O
xy

ge
n 

D
em

an
d 

(m
g 

O
2 /

dm
3 )

Fig. 2. Temporal change of BOD indicator for raw sewage.
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Fig. 3. Temporal change of BOD indicator for treated sewage.
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Fig. 5. Cross-correlation function forPtot.

cross-correlation (13) functions for the investigated sewage
components[7].

Rm̄m̄(τ) = Ae−α|τ|cos(ωτ) (12)

R+
ūm̄(τ) − R−

m̄ū(τ) = [B cos(γτ) + D sin(γτ)]e−βτ

− [B cos(ωτ) + C sin(ωτ)]eατ (13)

The functions have the following Laplace transforms in a
frequency domain[7]:

S+
m̄m̄(s) − S−

m̄m̄(s) = A

{
s + α

(s + α)2 + ω2
− s − α

(s − α)2 + ω2

}
(14)

S+
ūm̄(s) − S−

m̄ū(s)=
{
B

s + β

(s + β)2 + γ2
+ D

γ

(s + β)2 + γ2

}

−
{
B

s − α

(s − α)2 + ω2
+ C

ω

(s − α)2 + ω2

}
(15)

The values of constants appearing in these equations for five
sewage components are given inTables 2 and 3. Inserting
the above transforms intoEq. (11)and after some simple
algebraic manipulations the following general form of the
transfer function could be obtained

W(s) = 1

2αA

[
F0 + F1

s +
√

(α2 + ω2)
+ F2

s −
√

(α2 + ω2)

+ F3s + F4

(s + β)2 + γ2

]
(16)

where

F0 = Bα + Bβ + Cω − Dγ

Table 2
Parameters of the auto-correlation function of the input random signals

V̄ A α ω

Suspension 286.75 0.076 1.22
BOD5 1685.42 0.056 0.77
COD 4291.65 0.15 1.13
Ntot 410.14 0.10 0.88
Ptot 1.30 0.12 1.33

F1 =

{F0(α
2 + ω2)(α − √

α2 + ω2)

+[B(β2 + γ2 − α2 − ω2)

+2αDγ + 2βCω](α2 + ω2 + α
√

α2 + ω2)

−[(α2 + ω2)(Bβ + Dγ) + (β2 + γ2)

× (Bα − Cω)](α − √
α2 + ω2)}

(β − √
α2 + ω2)2 + γ2)

F2 =

{F0(α
2 + ω2)(α + √

α2 + ω2)

+ [B(β2 + γ2 − α2 − ω2) + 2αDγ + 2βCω]
× (α2 + ω2 + α

√
α2 + ω2)

− [(α2 + ω2)(Bβ + Dγ) + (β2 + γ2)(Bα − Cω)]
× (α + √

α2 + ω2)}
(β + √

α2 + ω2)2 + γ2

F3 = 2(α − β)F0 + B(β2 + γ2 − α2 − ω2) + 2αDγ

+ 2βCω − (F1 + F2)F4 = (α2 + ω2)(Bβ + Dγ)

+ (β2 + γ2)(Bα − Cω) − F0(β
2 + γ2)

− (F1 − F2)(β
2 + γ2)√

α2 + ω2

The denominator of the transfer function (16) has a posi-
tive real root(s = +

√
α2 + ω2) causing an unstable impulse

characteristic. The existence of a stable solution ofEq. (16)
requires that the termF2 in Eq. (16) must be eliminated
[4]. Equating to zero the termF2, the dependence ofD on
other parameters in this term is obtained. Then theEq. (16)
is reduced to the following form:

W(s) = b3s
3 + b2s

2 + b1s + b0

a3s3 + a2s2 + a1s + a0
(17)

The values of matrix elements of the transfer function
for five analysed indicators of the sewage are presented in
Table 4.

To determine the constants of the correlation functions
(12) and (13) the method of the non-linear estimation was
used.

Taking the inverse Laplace transform[7] of the transfer
function (17) we obtain the plant weighting function (im-
pulse response) matrix (18).
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Table 3
Parameters of the cross-correlation function of the output random signals

V̄ B C D α β γ ω

Suspension 1.37 9.69 11.08 0.076 0.066 0.93 1.22
BOD5 4.82 11.98 13.18 0.056 0.047 0.64 0.77
COD 52.09 145.54 176.64 0.15 0.093 0.97 1.13
Ntot −1.16 −14.33 −18.96 0.1 0.12 0.73 0.88
Ptot −0.031 −0.046 −0.05 0.12 0.11 1.05 1.33

Table 4
The values of matrix elements of the transfer function for five analysed
indicators of the sewage

V̄ F0 F5 F6 F7

Suspension 1.712 −8.229 10.534 −4.358
BOD5 1.286 −3.432 4.379 0.209
COD 5.777 −85.24 149.67 10.109
Ntot 0.975 4.722 −10.28 −3.359
Ptot −0.016 0.060 −0.065 0.026

W(t) = 1

2�A
{F0δ(t) + F5e−(

√
α2+ω2)t

+ [(F6 cos(γt) + F7 sin(γt)]e−βt} (18)

where

F5 =
2(α − √

α2 + ω2)[F0(α
2 + ω2)

+ (α2 + ω2)(Bβ + Dγ) + (β2 + γ2)(Bα − Cω)]

(β − √
α2 + ω2)2 + γ2

,

F6 = B(β2 + γ2 − α2 − ω2) + 2αDγ + 2βCω

+ 2(α − β)F0 − F5,

F7 = 1

γ

[
β2 + γ2

√
α2 + ω2

F5 − B(β2 + γ2 − α2 − ω2)

+ 2αDγ + 2βCω − F0(β
2 + γ2) − F6β

]
As an example,Fig. 6 presents the impulse characteristic

for nitrogen. Similar characteristics for other indicators have
been calculated but are not shown in this paper. Instead,
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in Table 4the values ofF0, F5, F6 andF7 appearing in
Eq. (18)for five measured indicators are given.

The transfer function (17) is an algebraic image of the
linear differential equation for the mathematical model of a
system in a dynamical state. Using the property of Laplace
transform connecting the derivatives with respect to time
and frequency the following form of the differential equa-
tion describing the mathematical model of municipal waste
treatment plant is obtained

a3
d3Rum(τ)

dτ3
+ a2

d2Rum(τ)

dτ2
+ a1

dRum(τ)

dτ
+ a0Rum(τ)

= b3
d3Rmm(τ)

dτ3
+ b2

d2Rmm(τ)

dτ3

+ b1
dRmm(τ)

dτ
− b0Rmm(τ)

(19)

where

a3 = 1

a2 = (2β +
√

α2 + ω2)

a1 = [(β +
√

α2 + ω2) + γ2]

a0 = [(β2 + γ2)
√

α2 + ω2]

b3 = 1

2αA
(Bα + Bβ + Cω − Dγ)

b2 = 1

A
(Bα + Bβ + Cω − Dγ)

− (α2 + ω2)(Bβ + Dγ) + (β2 + γ2)(Bα − Cω)√
α2 + ω2

b1 =
[

1

2αA
(Bα + Bβ + Cω − Dγ)(α2 + ω2)

− 2(α2 + ω2)(Bβ + Dγ) + (β2 + γ2)(Bα − Cω)α√
α2 + ω2

]

b0 = (α2 + ω2)(Bβ + Dγ)

+ (β2 + γ2)(Bα − Cω)
√

α2 + ω2)

The values for constants appearing inEq. (19)are given in
Table 5. This model takes into account the interdependence



S. Masiuk, J. Kawecka-Typek / Chemical Engineering Journal 102 (2004) 233–239 239

Table 5
The values of constants appearing inEq. (19)

V̄ a3 a2 a1 a0 b3 b2 b1 b0

Suspension 1 1.354 1.031 1.063 0.0393 −0.0944 0.0434 −0.150
BOD5 1 0.866 0.484 0.318 0.0068 −0.0094 0.0029 −0.0060
COD 1 1.326 1.162 1.082 0.0045 −0.0536 −0.0106 −0.0713
Ntot 1 1.126 0.760 0.485 0.012 0.059 0.021 0.045
Ptot 1 1.555 1.408 1.488 −0.051 0.073 −0.070 0.153

of five main indicators for the raw and treated sewage, sta-
tistically averaged with the help of the correlation functions
being the stochastic functions of time.

5. Conclusions

In this article we have attempted to illustrate how the sta-
tistical correlation analysis of a developed model can be ap-
plied to a real sewage treatment plant. A significant omission
in the literature is the lack of any references to the stochastic
nature of a real process of this type[10,11]. Thus, our paper
may be helpful in description of a sewage treatment plant by
a model considering full information with the input and out-
put signal vectors for each component of the system includ-
ing their self-interaction. The proposed method is simple,
effective and accessible for a wide range of industrial users
because it employs standard mathematical methods and al-
lows to describe the system by the deterministic statistically
averaged mathematical model with dynamical characteris-
tics in time and frequency domain. The method allows also
to construct a rough block structure that is needed for the
synthesis and analysis of a real municipal sewage treatment
plant. However, our approach requires, from the experimen-
tal point of view, the execution of a large number of arduous
measurements during the length of the process. This may
be an obstacle because usually there is a lack of additional
measuring points due to the economy.
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